4 Folgen und Reihen

In diesem Kapitel lernen wir zunächst die grundlegenden Eigenschaften von Folgen und Reihen kennen. Auf diesen Eigenschaften basiert die *Finanzmathematik*. Anschließend beschäftigen wir uns mit dem Begriff des <u>Grenzwertes</u> von Folgen bzw. Reihen. Der Grenzwertbegriff ist fundamental für die *Differentialrechnung* und *Integralrechnung*.

Generalvoraussetzung für § 4

Für den gesamten § 4 gilt:
$$n \in \mathbb{N}$$
!

Also insbesondere: *n* ist niemals Null.

Einführung Folgen

Setzen Sie die folgenden Folgen sinnvoll fort:

Einführung Folgen

3, 7, 11, 15, 19 2, -1, -4, -7, -10	d = 4 $d = -3$	Addition eines konstanten Wertes	Arithmetische Folgen
$ \begin{array}{c} 2, 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots \\ 1, -1, 1, -1, 1, \dots \end{array} $	$q = \frac{1}{2}$ $q = -1$	Multiplikation mit konstanten Faktor	Geometrische Folgen
2, 3, 5, 7, 11,	Prim- zahl	beschreibende Eigenschaft	
$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$	$a_n = \frac{1}{n}$	Bildungsgesetz	Sonstige Folgen
siehe Tafel		"chaotisch"	

Tabelle 9: Einige Folgen zur Einstimmung

4.1 Arithmetische Folgen

Definition 4.1. Arithmetische Folgen besitzen eine konstante <u>Differenz</u> zwischen zwei benachbarten Folgegliedern und es gilt:

$$a_n = a_1 + (n-1) \cdot d$$
 für alle $n \in \mathbb{N}$

wobei $a_1 \in \mathbb{R}$ den Startwert und $d \in \mathbb{R}$ die Konstante bedeutet.

4.2 Geometrische Folgen

Definition 4.2. Geometrische Folgen besitzen einen <u>konstanten Faktor</u> zwischen zwei benachbarten Folgegliedern und es gilt:

$$\boxed{a_n = a_1 \cdot q^{n-1}} \quad \text{für alle } n \in \mathbb{N}$$

wobei $a_1 \in \mathbb{R}$ den Startwert und $q \in \mathbb{R}$ den konstanten Faktor bedeutet.

4.3 Die Fibonacci-Zahlen

Definition 4.3. Gegeben sind:

$$a_1 = 1$$
, $a_2 = 1$

sowie die Rekursionsformel (recurrere - lat.: zurücklaufen)

$$a_n = a_{n-1} + a_{n-2}$$
 (für $n \ge 3$).

Damit erhalten wir die FIBONACCI-Zahlen

				l .									13
a_n	1	1	2	3	5	8	13	21	34	55	89	144	233

n	14	15	16	17	18	19	20	21	
a_n	377	610	987	1597	2584	4181	6765	10946	

Tabelle 10: FIBONACCI-Zahlen

4.3.1 Kaninchenpopulation

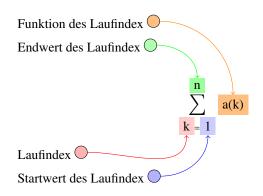
. FIBONACCI illustrierte diese Folge durch die einfache mathematische Modellierung des Wachstums einer Kaninchenpopulation nach folgenden Regeln:

- 1. Jedes Paar Kaninchen wirft pro Monat ein weiteres Paar Kaninchen.
- 2. Ein neugeborenes Paar bekommt erst im zweiten Lebensmonat Nachwuchs (die Austragungszeit reicht von einem Monat in den nächsten).
- 3. Die Tiere befinden sich in einem abgeschlossenen Raum, so dass kein Tier die Population verlassen und keines von außen hinzukommen kann.

Wissenschaftler 5: FIBONACCI, pisaner Mathematiker (um 1180 Pisa - nach 1241 Pisa)

4.4 Das Summenzeichen

Definition 4.4. In der Mathematik werden *Summen* häufig unter Verwendung des *Summenzeichen* Σ (Gross-Sigma) geschrieben. ¹³



Der Laufindex wird immer um genau Eins erhöht, niemals um einen anderen Wert.

 $^{^{13}} Das \ Symbol \ \Sigma$ wurde 1755 durch Leonhard EULER (1707-1783) eingeführt.

4.4.1 Beispiel 1 für das Summenzeichen

Beispiel 1 für das Summenzeichen

Beispiel für das Summenzeichen

Wir wollen

$$\sum_{k=1}^{5} k^2$$

berechnen:

$$\sum_{k=1}^{5} k^2 = a(1) + a(2) + a(3) + a(4) + a(5)$$
$$= 1^2 + 2^2 + 3^2 + 4^2 + 5^2$$
$$= 1 + 4 + 9 + 16 + 25 = 55$$

4.4.2 Beispiel 2 für das Summenzeichen

Beispiel 2 für das Summenzeichen

Beispiel für das Summenzeichen

Wir wollen

$$\sum_{k=-1}^{3} (2k^2 + 1)$$

berechnen:

$$\sum_{k=-1}^{3} (2k^2 + 1) = a(-1) + a(0) + a(1) + a(2) + a(3)$$

$$= [2(-1)^2 + 1] + [2 \cdot 0^2 + 1] + [2 \cdot 1^2 + 1] + [2 \cdot 2^2 + 1] + [2 \cdot 3^2 + 1]$$

$$= 3 + 1 + 3 + 9 + 19 = 35$$

4.5 Arithmetische Reihe

Definition 4.5. Unter einer <u>arithmetischen Reihe</u> verstehen wir die Folge der Partialsummen S_n einer arithmetischen Folge und es gilt:

$$S_n = \left[\sum_{k=1}^n a_k = \frac{a_1 + a_n}{2} \cdot n \right] = a_1 + a_2 + a_3 + \dots + a_n$$

Wissenschaftler 6: Carl-Friedrich GAUSS, deutscher Mathematiker (30.04.1777 Braunschweig - 23.02.1855 Göttingen)

 $,, Prince ps\ Mathematic or um ``$

4.5.1 Beispiel Arithmetische Reihe

Beispiel für eine arithmetische Reihe

3	=	3	=	$\frac{3+3}{2} \cdot 1$ $\frac{3+7}{2} \cdot 2$ $\frac{3+11}{2} \cdot 3$ $\frac{3+15}{2} \cdot 4$ $\frac{3+19}{2} \cdot 5$ $\frac{3+23}{2} \cdot 6$
3 + 7	=	10	=	$\frac{3+7}{2}\cdot 2$
3 + 7 + 11		21	=	$\frac{3+11}{2}\cdot 3$
3 + 7 + 11 + 15	=	36	=	$\tfrac{3+15}{2}\cdot 4$
3 + 7 + 11 + 15 + 19	=	55	=	$\frac{3+19}{2}\cdot 5$
3 + 7 + 11 + 15 + 19 + 23	=	78	=	$\frac{3+23}{2}\cdot 6$

Tabelle 11: Beispiel einer arithmetischen Reihe

4.6 Geometrische Reihen

Definition 4.6. Unter einer geometrischen Reihe verstehen wir die Folge der Partialsummen S_n einer geometrischen Folge und es gilt:

$$S_n = \left[\sum_{k=1}^n a_k = a_1 \cdot \frac{q^n - 1}{q - 1} = a_1 \cdot \frac{1 - q^n}{1 - q} \right] \quad (q \neq 1)$$

Die Bedingung

 $q \neq 1$

ist wesentlich!

Bitte denken Sie daran, daß Sie nicht durch Null dividieren dürfen!

4.6.1 Ein spezieller Typ von geometrischen Reihen

. Geometrische Folgen mit q = 1 sind konstant:

z. B.
$$3, 3, 3, 3, 3, \ldots$$

Da die Formel 4.6 hierfür nicht anwendbar ist, interpretieren wir solche Folgen als arithmetische Folge mit Differenz d = 0. Dann greift für die Reihe die Formel 4.5

4.7 Grenzwert einer Folge

Definition 4.7. (i) Eine Zahl $g \in \mathbb{R}$ heißt Grenzwert der Folge a_n , wenn es zu jeder vorgegebenen Schranke $\varepsilon > 0$ einen Index $n_0 \in \mathbb{N}$ gibt, so dass für alle $n \ge n_0$ gilt:

$$|a_n - g| < \varepsilon \iff g - \varepsilon < a_n - g < \varepsilon \iff g - \varepsilon < a_n < g + \varepsilon$$

- (ii) Besitzt eine Folge a_n einen Grenzwert $g \in \mathbb{R}$, so heißt sie <u>konvergent</u>, andernfalls heißt sie divergent. ¹⁴
- (iii) Im Falle der Konvergenz schreiben wir

$$g = \lim_{n \to \infty} a_n$$

,,g ist Limes der a_n für n gegen ∞".

4.7.1 Beispiele für Grenzwerte

Beispiele für Grenzwerte

(i)
$$a_n = \frac{1}{n} \implies \lim_{n \to \infty} a_n = 0$$

$$(ii) a_n = 7 \Rightarrow \lim_{n \to \infty} a_n = 7$$

(iii)
$$a_n = \frac{n-1}{n} \implies \lim_{n \to \infty} a_n = 1$$

(iv)
$$a_n = n \implies \lim_{n \to \infty} a_n$$
 existiert nicht.

$$(v)$$
 $a_n = (-1)^n \implies \lim_{n \to \infty} a_n$ existiert nicht.

Die "Grenzwerte" ∞ bzw. $-\infty$ existieren nicht

Ein Grenzwert ∞ bzw. -∞ ist verboten, vgl. 4.9

4.8 Eindeutigkeit des Grenzwertes

Satz 4.8. Sei a_n eine konvergente Folge mit Grenzwert $g \in \mathbb{R}$.

Dann ist der Grenzwert $g \in \mathbb{R}$ eindeutig bestimmt.

 $^{^{14}}$ Die Begriffe konvergent und divergent gehen auf James GREGORY (1638-1675) zurück, der sie 1667 erstmalig verwendet hat.

4.9 Regeln für konvergente Folgen

Satz 4.9. Seien a_n und b_n zwei konvergente Folgen mit den Grenzwerten

$$a = \lim_{n \to \infty} a_n$$
 und $b = \lim_{n \to \infty} b_n$

Dann gilt:

(i) Die Folge $(a_n \stackrel{\pm}{\cdot} b_n)$ konvergiert und es gilt:

$$\lim_{n\to\infty}(a_n\stackrel{\pm}{\cdot}b_n)=a\stackrel{\pm}{\cdot}b$$

(ii) Sei $b \neq 0$. Dann konvergiert auch die Folge $\frac{a_n}{b_n}$ und es gilt:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}$$

4.9.1 Beispiele für Grenzwerte

Beispiele für Grenzwerte

Bestimmen Sie die Grenzwerte:

(i)
$$\lim_{n \to \infty} \frac{3n^2 + 13n}{n^2 - 2} = \lim_{n \to \infty} \frac{n^2 \cdot (3 + \frac{13}{n})}{n^2 \cdot (1 - \frac{2}{n^2})} = \lim_{n \to \infty} \frac{3 + \frac{13}{n}}{1 - \frac{2}{n^2}} = \frac{3 + 0}{1 - 0} = 3$$

(ii)
$$\lim_{n \to \infty} \frac{3n^2 + 13n}{n^3 - 2} = \lim_{n \to \infty} \frac{n^3 \cdot (\frac{3}{n} + \frac{13}{n^2})}{n^3 \cdot (1 - \frac{2}{n^3})} = \lim_{n \to \infty} \frac{\frac{3}{n} + \frac{13}{n^2}}{1 - \frac{2}{n^3}} = \frac{0 + 0}{1 - 0} = 0$$

4.9 Verbotene Grenzwerte

. Hierzu folgendes Beispiel: Katastrophe - 1. Teil

$$a_n = n \Rightarrow \lim_{n \to \infty} a_n = \infty$$

$$b_n = \frac{1}{n} \Rightarrow \lim_{n \to \infty} b_n = 0$$

$$a_n \cdot b_n = n \cdot \frac{1}{n} = 1 \Rightarrow \lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} 1 = 1 \stackrel{\ge}{=} \infty \cdot 0$$

. Katastrophe - 2. Teil

$$a_n = n \Rightarrow \lim_{n \to \infty} a_n = \infty$$

$$b_n = \frac{1}{n^2} \Rightarrow \lim_{n \to \infty} b_n = 0$$

$$a_n \cdot b_n = n \cdot \frac{1}{n^2} = \frac{1}{n} \Rightarrow \lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} \frac{1}{n} = 0 \stackrel{\ge}{=} \infty \cdot 0$$

. Damit folgt also

$$\begin{cases}
1 = \infty \cdot 0 \\
0 = \infty \cdot 0
\end{cases} \Rightarrow 1 = 0 \quad 4$$

Grenzwerte ∞ und $-\infty$ verboten

Daher sind ∞ und $-\infty$ als Grenzwerte verboten!

4.10 Konvergenz von q hoch n

Satz 4.10. Es gilt:

$$\lim_{n\to\infty}q^n=\left\{\begin{array}{ll} divergent & q\leq -1\\ 0 & |q|<1\\ 1 & q=1\\ divergent & q>1 \end{array}\right.$$

	q	Repräsentant					$\lim_{n\to\infty}q^n$
Beweis.	<i>q</i> < -1	q = -2	-2	4	-8	16	 nicht konvergent
	q = -1	q = -1	-1	1	-1	1	 nicht konvergent
	$-1 < q \le 0$	$q = -\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{4}$	$-\frac{1}{8}$	$\frac{1}{16}$	 $\lim_{n\to\infty}q^n=0$
	0 < q < 1	$q = \frac{1}{2}$	1/2	<u>1</u> 4	1/8	1 16	 $\lim_{n\to\infty}q^n=0$
	q = 1	q = 1	1	1	1	1	 $\lim q^n = 1$
							<i>n</i> →∞
	q > 1	q = 2	2	4	8	16	 nicht konvergent

Tabelle 12: Konvergenz von q^n

Satz 4.11. Wir fragen uns nach dem Grenzwert einer geometrischen Reihe, wenn wir unendlich viele Glieder summieren. Dazu erinnern wir uns an die Formel der geometrischen Reihe in 4.6:

$$\sum_{k=1}^{n} a_k = a_1 \cdot \frac{1 - q^n}{1 - q} \quad mit \ q \neq 1$$

Bitte beachten Sie, daß dann in 4.10 gilt:

$$\lim_{n \to \infty} q^n = \begin{cases} \frac{divergent}{0} & q \le -1\\ 0 & |q| < 1\\ \frac{VERBOTEN}{0} & q = 1\\ \frac{divergent}{0} & q > 1 \end{cases}$$

Wir fragen nun nach

$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} a_k \right) = \lim_{n \to \infty} \left(a_1 \cdot \frac{1 - q^n}{1 - q} \right) = \lim_{n \to \infty} \left(a_1 \cdot \frac{1}{1 - q} \cdot (1 - q^n) \right)$$

$$= \lim_{n \to \infty} (a_1) \cdot \lim_{n \to \infty} \left(\frac{1}{1 - q} \right) \cdot \lim_{n \to \infty} \left(1 - \underbrace{q^n}_{\rightarrow 0} \right)$$

$$= \lim_{n \to \infty} (a_1) \cdot \lim_{n \to \infty} \left(\frac{1}{1 - q} \right) \cdot \lim_{n \to \infty} \left(1 - \underbrace{q^n}_{\rightarrow 0} \right)$$

Dies gilt jedoch nach 4.10 nur, falls -1 < q < 1.

4.12 Unendliche geometrische Reihe:

Definition 4.12. Gegeben sei die geometrische FOLGE (vgl. 4.2)

$$a_n = a_1 \cdot q^{n-1} \quad \text{mit} \left[-1 < q < +1 \right]$$

Dann ist die unendliche geometrische Reihe

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \left(\sum_{k=1}^{n} a_k \right)$$

definiert und es gilt:

$$\sum_{k=1}^{\infty} a_k = a_1 \cdot \frac{1}{1-q}$$

ACHTUNG:

Die Formel für die unendliche geometrische Reihe

$$\sum_{k=1}^{\infty} a_k = a_1 \cdot \frac{1}{1-q}$$

gilt genau dann, wenn

$$-1 < q < +1$$

Diese Bedingung ist wesentlich!

4.13 Beispiele zur unendlich geometrischen Reihe

Beispiele zur unendlichen geometrischen Reihe

Berechnen Sie den Wert folgender unendlicher geometrischer Reihen:

Beispiel 1 zur unendlichen geometrischen Reihe

$$0, \overline{4} = \frac{4}{10} + \frac{4}{100} + \frac{4}{1000} + \dots$$

$$= \frac{4}{10} \cdot \frac{1}{1 - \frac{1}{10}}$$

$$= \frac{4}{10} \cdot \frac{1}{\frac{9}{10}}$$

$$= \frac{4}{10} \cdot \frac{10}{9}$$

$$= \frac{4}{9} = 0, \overline{4}$$

Es gilt:
$$a_1 = \frac{4}{10}$$
 und $-1 < q = \frac{1}{10} < +1$

Beispiel 2 zur unendlichen geometrischen Reihe

$$0, \overline{63} = \frac{63}{100} + \frac{63}{10,000} + \frac{63}{1,000,000} + \dots$$

$$= \frac{63}{100} \cdot \frac{1}{1 - \frac{1}{100}}$$

$$= \frac{63}{100} \cdot \frac{\frac{1}{99}}{\frac{100}{100}}$$

$$= \frac{63}{100} \cdot \frac{100}{99}$$

$$= \frac{63}{99} = \boxed{\frac{7}{11} = 0, \overline{63}}$$

Es gilt:
$$a_1 = \frac{63}{100}$$
 und $-1 < q = \frac{1}{100} < +1$

Beispiel 3 zur unendlichen geometrischen Reihe

$$\sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{2}}$$

$$= \frac{1}{2} \cdot \frac{1}{\frac{1}{2}}$$

$$= \frac{1}{2} \cdot \frac{2}{1}$$

$$= 1$$

Es gilt:
$$a_1 = \frac{1}{2}$$
 und $-1 < q = \frac{1}{2} < +1$

Beispiel 4 zur unendlichen geometrischen Reihe

$$-\sum_{k=1}^{\infty} \left(-\frac{1}{2}\right)^k = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \dots = \frac{1}{2} \cdot \frac{1}{1 - (-\frac{1}{2})}$$

$$= \frac{1}{2} \cdot \frac{1}{\frac{3}{2}}$$

$$= \frac{1}{2} \cdot \frac{2}{3}$$

$$= \frac{1}{3}$$

Es gilt:
$$a_1 = \frac{1}{2}$$
 und $-1 < q = -\frac{1}{2} < +1$